General Polynomial Solution

$$1. \qquad \frac{1}{(a-b)(b-c)} + \frac{1}{(b-c)(c-a)} + \frac{1}{(c-a)(a-b)} = \frac{(c-a) + (a-b) + (b-c)}{(a-b)(b-c)(c-a)} = 0$$

$$\left(\frac{1}{a-b} + \frac{1}{b-c} + \frac{1}{c-a}\right)^2 = \frac{1}{(a-b)^2} + \frac{1}{(b-c)^2} + \frac{1}{(c-a)^2} + 2\left[\frac{1}{(a-b)(b-c)} + \frac{1}{(b-c)(c-a)} + \frac{1}{(c-a)(a-b)}\right]$$

$$= \frac{1}{(a-b)^2} + \frac{1}{(b-c)^2} + \frac{1}{(c-a)^2} \quad \text{, by the above.} \qquad \therefore \sqrt{\frac{1}{(a-b)^2} + \frac{1}{(b-c)^2} + \frac{1}{(c-a)^2}} = \frac{1}{a-b} + \frac{1}{b-c} + \frac{1}{c-a}$$

2. Let
$$p(x) = a_0x^3 + a_1x^2 + a_2x + a_3$$
, then by Division Algorithm, $p(x) = (x - k) q(x) + r(x)$.
Since deg $[r(x)] < deg [(x - k)] = 1$, therefore $r(x) = c$, a constant. ∴ $p(x) = (x - k) q(x) + c$.
Now, $p(k) = (k - k) q(x) + c = a_0k^3 + a_1k^2 + a_2k + a_3 = 0 \implies c = 0$. ∴ $p(x) = (x - k) q(x)$.
∴ $x - k$ is a factor of $p(x) = a_0x^3 + a_1x^2 + a_2x + a_3$.
Let $F(x, y, z) = x^3 (y - z) + y^3 (z - x) + z^3 (x - y)$.
Then $F(y, y, z) = x^3 (y - z) + y^3 (z - y) + z^3 (y - z) - y^3 (y - z) = 0$
∴ $(x - y)$ is a factor of $F(x, y, z)$ by Factor Theorem.
Since $F(x, y, z)$ is cyclic, $(x - y)(y - z)(z - x)$ is a factor of $F(x, y, z)$.
Deg $[F(x, y, z)] = 4$, deg $[(x - y)(y - z)(z - x)] = 3$, the remaining factor must be of degree 1 : $k(x + y + z)$.
 $F(x, y, z) = k(x + y + z) (x - y)(y - z) (z - x) = (x + y + z) (y - x) (z - x)$
3. (a) Let $F(a, b, c) = (b + c)^3 (b - c) + (c + a)^3 (c - a) + (a + b)^3 (a - b)$.
 $F(b, b, c) = (b + c)^3 (b - c) + (c + b)^3 (c - b) + (a + b)^3 (a - b)$.
 $F(b, b, c) = (b + c)^3 (b - c) + (c + b)^3 (c - a) = (x + y + z) (b - c) - (c + b)^3 (b - c) = 0$
∴ $(a - b)$ is a factor of $F(a, b, c)$ by Factor Theorem.
Since $F(a, b, c) = (b + c)^3 (b - c) + (c - a)^3 (c - a) + (a + b)^3 (a - b)$.
 $F(b, b, c) = (b + c)^3 (b - c) + (c + a)^3 (c - a) + (a + b)^3 (a - b)$.
 $F(a, b, c) = (b + c)^3 (b - c) + (c + a)^3 (c - a) = (x + y + z) (b - c) - (c + b)^3 (b - c) = 0$
∴ $(a - b)$ is a factor of $F(a, b, c)$ by Factor Theorem.
Since $F(a, b, c) = (b + c)^3 (b - c) + (c - a) = 3$, the remaining factor must be of deg 1 : $k(a + b + c)$.
 $F(a, b, c) = k(a + b + c) (a - b) (b - c) (c - a) = 3$.
 $F(a, b, c) = -2 (a + b + c) (a - b) (b - c) (c - a) = 2 (a + b + c) (b - a) (c - b) (a - c)$.
(b) Let $F(a, b, c) = (b - c)(c + a - b)(a + b - c) + (c - a)(a + b - c)(b + c - a)(c + a - b)$.
 $F(b, b, c) = (b - c)(c + b - b)(b + b - c) + (c - b)(b + c - b)(b + c - b)(c + b - b)$.

$$= (b-c) c (2b-c) + (c-b) (2b-c) c = c (b-c)(2b-c) - c (b-c)(2b-c) = 0$$

 \therefore (a – b) is a factor of F(a, b, c) by Factor Theorem.

 $\label{eq:since} \begin{array}{ll} F(a,\,b,\,c) & \text{is cyclic}, & (a-b)\,(b-c)\,(c-a) & \text{is a factor of} & F(a,\,b,\,c) \ . \end{array}$

 $Deg [F(a, b, c)] = 3, \quad deg[(a - b) (b - c) (c - a)] = 3, \text{ the remaining factor must be of degree } 0: \quad k.$

 $F(a, b, c) = k (a - b) (b - c) (c - a) \qquad \dots \dots (1)$

Comparing coefficients of a^2b on both sides of (1), we have k = -4.

F(a, b, c) = -4 (a - b) (b - c) (c - a) = 4 (b - a)(c - b) (a - c) .

4. Let
$$P(x) = x^3 + 3x^2 - 2$$
. Since $x = -1$ is a root of $P(x)$, by division $P(x) = (x + 1)(x^2 + 2x - 2) = 0$
∴ a, b are roots of $x^2 + 2x - 2 = 0 \implies a + b = -2$ (1), $ab = -2$ (2)
Let $f(x) = px^2 + qx + r$ $\therefore f(1) = p + q + r = 1$ (3)
 $f(a) = pa^2 + qa + r = b$ (4)
 $f(b) = pb^2 + qb + r = a$ (5)
(4) - (5). $p(a + b)(a - b) + q(a - b) = b - a \implies p(a + b) + q = -1 \implies 2p - q = 1$ (by (1))(6)
(4) + (5). $p(a + b)^2 - 2ab] + q(a + b) + 2r = a + b \implies 8p - 2q + 2r = -2$ (by (1),(2))
 $\implies 4p - q + r = -1$ (7)
Solving (3), (6), (7), $p = 4$, $q = 7$, $r = -10$. $\therefore f(x) = 4x^2 + 7x - 10$ is the required polynomial.
5. (⇒) If $f(x) = ax^3 + bx^2 + cx + d$ is a perfect cube, then
 $f(x) = ax^3 + bx^2 + cx + d = a(x + e)^3 = a(x^3 + 3ex^2 + 3e^2x + e^3)$
Compare coefficients, we have $b = 3ac, c = 3ae^2, d = ae^3$
 $\therefore b^3 = (3ae)^3 = 27a^3e^6 = 27a(ae^3)^2 = 27a^2$.
(⇐) If $b^3 = 27a^2d$ and $c^3 = 27a^2d^3$, then
 $f(x) = ax^3 + bx^2 + cx + d = ax^3 + 3a^{\frac{2}{2}}d^{\frac{2}{3}}x^2 + 3a^{\frac{1}{2}}d^{\frac{2}{3}}x + d = \left(a^{\frac{1}{2}}x + d^{\frac{1}{3}}\right)^3$
6. (a) $S(n) = 1 - 2 + 2 - 3 + 3 - 4 + \dots + n(n + 1)$ (1)
 $S(n = A + Bn + Cn^2 + Dn^3 + En^4 + \dots)$ (2)
From (2), $S(n+1) - S(n) = A + B(n+1) + C(n+1)^2 + D(n+1)^3 + E(n+1)^4 - (A + Bn + Cn^2 + Dn^3 + En^4) + \dots$
 $= (B + C + D + E) + (2C + 3D + 4E)n + (3D + 6E)n^2 + 4En^3 + \dots$ (3)
From (1) $S(n+1) - S(n) = (n + 1)(n + 2) = 2 + 3n + n^2$ (4)
Apply the Principle of Undetermined Coefficients, we have, from (3) and (4).
 $B + C + D + E = 2$ (5)
 $2C + 3D + 4E = 3$ (6)
 $3D + 6E = 1$ (7)
 $4E = 0$ (8)
From (8), $E = 0$ (and the coefficients of higher terms in n are zero)
Solving (5), (6), (7), D = 1/3, C = 1, B = 2/3.

Subst. the values of B, C, D, E in (2), $S(n) = A + \frac{2}{3}n + n^2 + \frac{1}{3}n^3$

$$S(1) = A + \frac{2}{3} + 1 + \frac{1}{3} = A + 2$$
(9) and from (1), $S(1) = 1 \times 2 = 2$ (10)

:.
$$A = 0$$
 :. $S(n) = \frac{2}{3}n + n^2 + \frac{1}{3}n^3 = \frac{1}{3}n(n+1)(n+2)$

(b)	$S(n) = 1^3 + 3^3 + 5^3 + 7^3 + \dots$	(1)			
	$S(n) = A + Bn + Cn^{2} + Dn^{3} + En^{4} + \dots$	(2)			
	From (2), $S(n+1) - S(n) = A + B(n+1) + C(n+1)^2 + D(n+1)^3 + E(n+1)^4 - (A + Bn + Cn^2 + Dn^3 + En^4) + C(n+1)^2 + D(n+1)^3 + C(n+1)^4 - (A + Bn + Cn^2 + Dn^3 + En^4) + C(n+1)^4 + C(n+1$				
	= (B + C + D + E) + (2C + C)	$3D + 4E$)n + $(3D + 6E)n^2 + 4En^3 +$	(3)		
	From (1) $S(n+1) - S(n) = (2n+1)^3 = 8n^3 + 12n^3$	$n^2 + 6n = 1$	(4)		
	Apply the Principle of Undetermined Coefficients, we have, from (3) and (4),				
	B + C + D + E = 1(5)				

2C + 3D + 4E = 6....(6)(7) 3D + 6E = 124E = 8....(8)

The coefficients of terms higher n^4 are zero and is not calculate here.

Solving (5), (6), (7),
$$E = 2$$
, $D = 0$, $C = -1$, $B = 0$.
Subst. the values of B, C, D, E in (2), $S(n) = A - n^2 + 2n^4$.
 $S(1) = A - 1 + 2 = A + 1$ (9) and from (1), $S(1) = 1^3 = 1$ (10)
 $\therefore A = 0$ $\therefore S(n) = -n^2 + 2n^4 = n^2 (2n^2 - 1)$.

7. Let
$$f(x) = x^3 + ax^2 + 11x + 6$$
, $g(x) = x^3 + bx^2 + 14x + 8$ with a common factor of the form $x^2 + px + q$.
 \therefore $f(x) = (x^2 + px + q)(x - \alpha) = x^3 + (p - \alpha)x^2 + (q - \alpha p)x - \alpha q$
 $g(x) = (x^2 + px + q)(x - \beta) = x^3 + (p - \beta)x^2 + (q - \beta p)x - \beta q$

$$g(x) = (x^{2} + px + q)(x - \beta) = x^{3} + (p - \beta)x^{2} + (q - \beta p)x$$

Comparing coefficients,

$a = p - \alpha$	(1)	(5)↓(1),	a = p + 6/q	(7)	(11)=(12), 8(11-q)=6(14)	- q)
$b=p-\beta$	(2)	(6)↓(2),	b = p + 8/q	(8)	$\therefore q = 2$	(13)
$11 = q - \alpha p$	(3)	(5) ↓(3),	11 = q + 6p/q	(9)	$(13) \downarrow (11), p = 3$	(14)
$14 = q - \beta p$	(4)	(6) ↓(4),	14 = q + 8p/q	(10)	$(13)(14)\downarrow(1), a=6$	
$-6 = \alpha q$	(5)	From (9),	p/q = (11 - q)/6	(11)	$(13)(14) \downarrow (2), b = 7$	
$-8 = \beta q$	(6)	From (10),	p/q = (14 - q)/8	(12)		

Let $f(x) = \sum_{i=0}^{n} a_i x^i$, $g(x) = \sum_{i=0}^{n} b_i x^i$, we may assume that the degree of f(x) and g(x) are both equal to 8.

n , if not, we can put some $\ a_i \ or \ b_i \ = 0$ $\ to make the degree the same.$

We use induction on n. Let $P(n) : f^2 + x g^2 \equiv 0$, deg $f = deg g = n \implies f \equiv 0, g \equiv 0$. For P(0), $f = a_0$, $g = b_0$, $f^2 + x g^2 = a_0^2 + x b_0^2 \equiv 0 \Rightarrow a_0^2 = b_0^2 = 0 \Rightarrow a_0 = b_0 = 0$ \therefore f = 0, g = 0. \therefore P(0) is true. Assume P(k) is true for some $k \in \mathbb{N}$. i.e. $f^2 + x g^2 \equiv 0$, deg $f = \deg g = k \implies f \equiv 0, g \equiv 0$(*) For P(k + 1), f² + x g² = $\left(\sum_{i=0}^{k+1} a_i x^i\right)^2 + x \left(\sum_{i=0}^{k+1} b_i x^i\right)^2 \equiv 0$ Put x = 0, we have $a_0 = 0$, $f^2 + x g^2 = \left(\sum_{i=1}^{k+1} a_i x^i\right)^2 + x \left(\sum_{i=0}^{k+1} b_i x^i\right)^2 \equiv 0$

$$\therefore \qquad x^{2} \left(\sum_{i=1}^{k} a_{i} x^{i-1} \right)^{2} + x \left(\sum_{i=0}^{k+1} b_{i} x^{i} \right)^{2} \equiv 0 \Longrightarrow x \left(\sum_{i=1}^{k} a_{i} x^{i-1} \right)^{2} + \left(\sum_{i=0}^{k+1} b_{i} x^{i} \right)^{2} \equiv 0$$

Put x = 0, we have $b_0 = 0$, $f^2 + x g^2 = x \left(\sum_{i=1}^k a_i x^{i-1}\right)^2 + x^2 \left(\sum_{i=1}^k b_i x^{i-1}\right)^2 \equiv 0$

 $\therefore \quad f^{2} + x g^{2} = \left(\sum_{i=1}^{k} a_{i} x^{i-1}\right)^{2} + x \left(\sum_{i=1}^{k} b_{i} x^{i-1}\right)^{2} \equiv 0. \quad \text{where the degrees of f and g are } k.$ By (*), $f \equiv 0, g \equiv 0. \quad \therefore \quad P(k) \text{ is also true.}$

By the Principle of Mathematical Induction, P(n) is true $\forall n \in \mathbb{N} \cup \{0\}$.

9.
$$s_1(x_1, x_2, x_3, x_4) = \text{coeff. of } y^3 = x_1 + x_2 + x_3 + x_4$$
.
 $s_2(x_1, x_2, x_3, x_4) = \text{coeff. of } y^2 = x_1 x_2 + x_1 x_3 + x_1 x_4 + x_2 x_3$.
 $s_3(x_1, x_2, x_3, x_4) = \text{coeff. of } y^1 = x_1 x_2 x_3 + x_1 x_2 x_3 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4$.
 $s_4(x_1, x_2, x_3, x_4) = \text{coeff. of } y^0 = x_1 x_2 x_3 x_4$.

10. (a)
$$f(x) = \sum_{r=1}^{3n} a_r x^r$$
, $\omega^3 = 1$, $1 + \omega + \omega^2 = \frac{1 - \omega^3}{1 - \omega} = \frac{1 - 1}{1 - \omega} = 0$, $1 + \omega^r + \omega^{2r} = \begin{cases} 0 & \text{if } r \neq 3k \\ 3 & \text{if } r = 3k \end{cases}$, $k \in \mathbb{N}$.

$$f(x) + f(\omega x) + f(\omega^{2} x) = \sum_{r=1}^{3n} a_{r} x^{r} + \sum_{r=1}^{3n} a_{r} \omega^{r} x^{r} + \sum_{r=1}^{3n} a_{r} \omega^{2r} x^{r} = \sum_{r=1}^{3n} (1 + \omega^{r} + \omega^{2r}) a_{r} x^{r} = 3 \sum_{r=1}^{n} a_{3r} x^{3r}$$

(b) $f(x) + \omega f(\omega x) + \omega^{2} f(\omega^{2} x)$

$$=\sum_{r=1}^{3n} a_r x^r + \omega \sum_{r=1}^{3n} a_r \omega^r x^r + \omega^2 \sum_{r=1}^{3n} a_r \omega^{2r} x^r = \sum_{r=1}^{3n} (1 + \omega^{r+1} + \omega^{2(r+1)}) a_r x^r = 3 \sum_{r=1}^{n} a_{3r-1} x^{3r-1}$$

$$f(x) + \omega^2 f(\omega x) + \omega(\omega^2 x) =$$

$$\sum_{r=1}^{3n} a_r x^r + \omega^2 \sum_{r=1}^{3n} a_r \omega^r x^r + \omega \sum_{r=1}^{3n} a_r \omega^{2r} x^r = \sum_{r=1}^{3n} (1 + \omega^{r+2} + \omega^{2r+1}) a_r x^r = 3 \sum_{r=1}^{n} a_{3r-2} x^{3r-2}$$

- Put $b_i = \frac{\beta_i}{\beta}$, then $\beta_0, \beta_1, ..., \beta_{q-1}, \beta_q \in \mathbb{Z}$ and have non common integral factors except ± 1 .
- Let $\gamma_0, \gamma_1, ..., \gamma_{r-1}, \gamma_r \in \mathbb{Z}$ be similarly defined.
- (i) If $\beta = \gamma = 1$, there is nothing to prove.

(ii) Accordingly, suppose that $\beta \gamma > 1$, then $\beta \gamma a(x) = B(x) C(x)$ where

 $B(x) = \beta_0 + \beta_1 x + \ldots + \beta_{q \text{-} 1} x^{q \text{-} 1} + \beta x^q \,, \quad C(x) = \gamma_0 + \gamma_1 x + \ldots + \gamma_{r \text{-} 1} x^{r \text{-} 1} + \gamma \, x^r \,.$

Let p be a prime factor of $\beta\gamma$; then p divides each coeff. in B(x) C(x).

At least one coeff. in B(x) is not divisible by p; among such coeffs. let β_i be the one with highest suffix. Similarly define γ_i .

The coeff. of x^{i+j} in B(x)C(x) is $\beta_{i+j}\gamma_0 + \ldots + \beta_{i+1}\gamma_{j-1} + \beta_i\gamma_j + \beta_{i-1}\gamma_{j+1} + \ldots + \beta_0\gamma_{i+j}$

Since β ; $\beta_{0,}$..., β_{i+1} and γ ; γ_{j+1} , ..., γ_{i+j} are all divisible by p, but $\beta_i \gamma_j$ is not divisible by p. The supposition $\beta \gamma > 1$ thus leads to a contadiction. **12.** (a) a(x)f(x) + g(x) = 0; g(x) = 0 or Deg[g(x)] < Deg[a(x)] \Rightarrow g(x) = - a(x)f(x) \Rightarrow g(x) has a factor a(x) \Rightarrow Deg[g(x)] \ge Deg [a(x)] So, if Deg[g(x)] < Deg[a(x)], there is a contradiction. \therefore g(x) = 0 and $-a(x)f(x) = 0 \implies f(x) = 0$ **(b)** b(x) = a(x)q(x) + r(x)....(1) Deg[r(x)] < Deg[a(x)]....(2) b(x) = a(x)Q(x) + R(x)Deg[R(x)] < Deg[a(x)] $(1) - (2), \quad a(x) [q(x) - Q(x)] + [r(x) - R(x)] = 0$ By (a), q(x) - Q(x) = 0 and r(x) - R(x) = 0. $\therefore q(x) = Q(x)$, r(x) = R(x). **13.** (a) By Division Algorithm, $f(x) = g(x) q_0(x) + r_0(x),$ $Deg[g(x)] > Deg[r_0(x)]$ $g(x) = r_0(x) q_1(x) + r_1(x),$ $Deg[r_0(x)] > Deg[r_1(x)]$ $r_0(x) = r_1(x) q_2(x) + r_2(x),$ $\text{Deg}[r_1(x)] > \text{Deg}[r_2(x)]$:: :: :: :: :: :: $r_{n-2}(x) = r_{n-1}(x) q_n(x) + r_n(x)$ $\text{Deg}[r_{n-1}(x)] > \text{Deg}[r_n(x)]$ $r_{n-1}(x) = r_n(x) q_{n+1}(x)$ Let P(n): \exists non-zero polynomials $M_i(x), N_i(x)$ such that $r_i(x) = M_i(x)f(x) + N_i(x)g(x)$ For P(0), $r_0(x) = f(x) - q_0(x)g(x)$, \therefore P(1) is true. For P(1), $r_1(x) = g(x) - q_1(x)r_0(x) = g(x) - q_1(x)[f(x) - q_0(x)g(x)] = -q_1(x)f(x) + [1 + q_0(x)q_1(x)]g(x)$ *.*. P(1) is true. Assume $r_i(x) = M_i(x)f(x) + N_i(x)g(x)$ is true $\forall i < k$. For P(k), $r_k(x) = r_{k-2}(x) - r_{k-1}(x) q_k(x)$ $= M_{k-2}(x)f(x) + N_{k-2}(x)g(x) - [M_{k-1}(x)f(x) + N_{k-1}(x)g(x)]q_k(x)$ $= [M_{k-2}(x) - M_{k-1}(x) q_k(x)] f(x) + [N_{k-2}(x) - N_{k-1}(x) q_k(x)] g(x)$ $= M_k(x)f(x) + N_k(x)g(x)$ *.*•. P(k) is true. By the Principle of Mathematical Induction, P(n) is true $\forall n \in \mathbb{N} \cup \{0\}$. In particular, $r_n(x) = M(x)f(x) + N(x)g(x)$, since by Euclidean Algorithm, $r_n(x)$ is the H.C.F. of f(x), g(x). (b) Since f(x), g(x) are relatively prime, H.C.F. of f(x), g(x) = 1, by part (a), we have 1 = M(x)f(x) + N(x)g(x)M(x) f(x) = 1 - N(x) g(x)*.*..(1) N(x) g(x) = 1 - M(x) f(x)....(2)

- If R(x)f(x) = S(x)g(x), then R(x)N(x)f(x) = S(x) N(x)g(x) = S(x) [1 M(x) f(x)], by (2)
- \therefore S(x) = f(x) [R(x)N(x) + S(x) M(x)] and f(x) divides S(x).

If
$$S(x)g(x) = R(x)f(x)$$
, then $S(x)M(x)g(x) = R(x)M(x)f(x) = R(x) [1 - N(x) g(x)]$, by (1)

 \therefore R(x) = g(x) [S(x)M(x) + R(x) N(x)] and g(x) divides R(x).

14. (a)
$$a^{2}(b-c) + b^{2}(c-a) + c^{2}(a-b) = 0 \implies -(a-b)(b-c)(c-a) = 0 \implies a = b \lor b = c \lor c = a$$

W.l.o.g. let $a = b$, $(a^{n} - b^{n})(b^{n} - c^{n})(c^{n} - a^{n}) = (b^{n} - b^{n})(b^{n} - c^{n})(c^{n} - b^{n}) = 0$.

(b)
$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{a+b+c} \implies (a+b+c)(bc+ca+ab) = abc \implies (a+b)(b+c)(c+a) = 0$$

 $\implies a = -b \lor b = -c \lor c = -a, \qquad W.l.o.g. \quad let a = -b,$
 $\therefore \frac{1}{a^{2n+1}} + \frac{1}{b^{2n+1}} + \frac{1}{c^{2n+1}} = \frac{1}{(-b)^{2n+1}} + \frac{1}{b^{2n+1}} + \frac{1}{c^{2n+1}} = \frac{1}{c^{2n+1}} = \frac{1}{(-b+b+c)^{2n+1}} = \frac{1}{(a+b+c)^{2n+1}}$
(c) $\frac{b^2 + c^2 - a^2}{2bc} + \frac{c^2 + a^2 - b^2}{2ca} + \frac{a^2 + b^2 - c^2}{2ab} = 1 \implies (a+b-c)(b+c-a)(c+b-a) = 0$
W.l.o.g. let $a+b-c=0,$
 $\frac{b^2 + c^2 - a^2}{2bc} = \frac{(b-c)^2 - a^2}{2bc} + 1 = \frac{(b-c+a)(b-c-a)}{2bc} + 1 = 0 + 1 = 1$
Similarly, $\frac{c^2 + a^2 - b^2}{2ca} = 1, \frac{a^2 + b^2 - c^2}{2ab} = -1$
 $\left(\frac{b^2 + c^2 - a^2}{2bc}\right)^{2n+1} + \left(\frac{c^2 + a^2 - b^2}{2ca}\right)^{2n+1} + \left(\frac{a^2 + b^2 - c^2}{2ab}\right)^{2n+1} = 1^{2n+1} + 1^{2n+1} + (-1)^{2n+1} = 1$

15. (a) Let
$$f(a, b, c) = ab(a^2 - b^2) + bc(b^2 - c^2) + ca(c^2 - a^2)$$

 $f(b, b, c) = b^2(b^2 - b^2) + bc(b^2 - c^2) + cb(c^2 - b^2) = bc(b^2 - c^2) - bc(b^2 - c^2) = 0$
By Factor theorem, $a - b$ is a factor of f .
Since f is cyclic, $(a - b)(b - c)(c - a)$ is a factor of $f(a, b, c)$.
Deg $[f(a, b, c)] = 4$, deg $[(a - b)(b - c)(c - a)] = 3$, the remaining factor must be of deg 1 : $k(a + b + c)$.
 $f(a, b, c) = k(a + b + c)(a - b)(b - c)(c - a) \dots (1)$
Comparing coefficients of ab^3 on both sides of (1), we have $k = -1$.
 $F(a, b, c) = -(a + b + c)(a - b)(b - c)(c - a) = (a + b + c)(b - a)(c - b)(a - c)$.

(b) Let
$$f(x, y, z) = (x - y)^5 + (y - z)^5 + (z - x)^5$$

 $f(y, y, z) = (y - y)^5 + (y - z)^5 + (z - y)^5 = (y - z)^5 - (y - z)^5 = 0$
By Factor theorem, $x - y$ is a factor of f . Since f is cyclic, $(x - y)(y - z)(z - x)$ is a factor of $f(x, y, z)$.
Deg $[f(x, y, z)] = 5$, deg $[(x - y)(y - z)(z - x)] = 3$, the remaining factor must be of deg 2
 $f(x, y, z) = [k_1(x^2 + y^2 + z^2) + k_2 (xy + yz + zx)] (x - y)(y - z)(z - x) \dots(1)$
Comparing coeff. of x^4y , $k = 5$; Comparing coeff. of x^3y^2 , $k = -5$
 $f(x, y, z) = 5(x^2 + y^2 + z^2 - xy - yz - zx) (x - y)(y - z)(z - x)$

(c) Let
$$f(a, b, c) = (a + b + c)^4 - (b + c)^4 - (c + a)^4 - (a + b)^4 + a^4 + b^4 + c^4$$

 $f(0, b, c) = (b + c)^4 - (b + c)^4 - c^4 - b^4 + b^4 + c^4 = 0$
By Factor theorem, a is a factor of f. Since f is cyclic, abc is a factor of f.
Deg [f(a, b, c)] = 4, deg[abc] = 3, the remaining factor must be of deg 1 : k(a + b + c).

 $\begin{aligned} f(a, b, c) &= kabc \ (a+b+c) & \dots(1) \\ f(1, 1, 1) &= 3k = (1+1+1)^4 - 2^4 - 2^4 - 2^4 - 1 + 1 + 1 = 36 \implies k = 12 \\ \therefore \quad f(a, b, c) &= 12abc \ (a+b+c) \end{aligned}$

16. Let f(x) = (x - a)(x - b) q(x) + (Ax + B), by Division Algorithm \therefore f(a) = Aa + B, f(b) = Ab + BSolving, $A = \frac{f(a) - f(b)}{a - b}$, $B = \frac{af(b) - bf(a)}{a - b}$ \therefore Remainder $= Ax + B = \frac{f(a) - f(b)}{a - b}x + \frac{af(b) - bf(a)}{a - b}$.

17. Let
$$f(x) = (x^2 + x + 1)^n - (x^2 - x - 1)^n$$
.
 $f(-1) = [(-1)^2 + (-1) + 1]^n + [(-1)^2 - (-1) + 1]^n = 1 - 1 = 0$
 \therefore By Factor theorem, $1 + x$ is a factor of $f(x)$ or $(x^2 + x + 1)^n - (x^2 - x - 1)^n$ is divisible by $1 + x$.
Put $x = 10$, $f(10) = (10^2 + 10 + 1)^n - (10^2 - 10 - 1)^n = 111^n - 89^n$.
Also, $1 + x = 1 + 10 = 11$, $\therefore 111^n - 89^n$ is divisible by 11.

18. (a) Let
$$f(x) = x^6 + 3x^4 - 7 = a(x^2 + 1)^3 + b(x^2 + 1)^2 + c(x^2 + 1) + d$$

Compare coeff. of x^6 -term, $a = 1$,
Compare coeff. of x^4 -term, $3 = 3a + b = 0 \implies b = 0$,
Compare coeff. of x^2 -term, $0 = 3a + 2b + c \implies c = -3$,
Compare coeff. of constant-term, $-7 = a + b + c + d \implies d = -5$
 $f(x) = x^6 + 3x^4 - 7 = (x^2 + 1)^3 - 3(x^2 + 1) - 5$
(b) $P(x) = x^8 + x^7 + 6x^6 + 3x^5 + 12x^4 + 4x^2 - 7x - 13$
 $= (x^2 + 1)^4 + (x^6 + 3x^4 - 7)(x + 2)$
 $Q(x) = (x + 2) (x^2 + 1)^4$
 $\frac{P(x)}{Q(x)} = \frac{(x^2 + 1)^4 + (x^6 + 3x^4 - 7)(x + 2)}{(x^2 + 1)^4 (x + 2)} = \frac{1}{x + 2} + \frac{x^6 + 3x^4 - 7}{(x^2 + 1)^4} = \frac{1}{x + 2} + \frac{(x^2 + 1)^3 - 3(x^2 + 1) - 5}{(x^2 + 1)^4}$, by (a)
 $= \frac{1}{x + 2} + \frac{1}{x^2 + 1} - \frac{3}{(x^2 + 1)^3} - \frac{5}{(x^2 + 1)^4}$